подходы, системы, технологии, ПОЛЁТ (научно-педагогический вестник)

Изобретение… признака делимости

7О своем изобретении нового признака делимости на 7, удобного для использования в школе, рассказывает ТРИЗ-педагог Сергей Владимирович Ефремов.

Работая в школе с подготовишками, зашёл в кабинет шестого класса и увидел на стене плакат «Признаки делимости чисел». Там были признаки делимости для чисел 2, 3, 4, 5, 6, 8, 9, а для числа 7 такого признака  не было. Я спросил у учителя математики:

— Почему нет признака делимости на семь?

Мне ответили, что он есть, но очень сложный.  Навел справки в Интернете. Нашёл три признака.

Признак 1: число делится на 7 тогда и только тогда, когда утроенное число десятков, сложенное с числом единиц, делится на 7. Например, 154 делится на 7, так как на 7 делится 15*3+4=49.

 Другой пример — число 1001 делится на 7, так как на 7 делятся 100*3+1=301, 30*3+1=91, 9*3+1=28,  2*3+8=14.

Признак 2. число делится на 7 тогда и только тогда, когда модуль алгебраической суммы чисел, образующих нечётные группы по три цифры (начиная с единиц), взятых со знаком «+», и чётных со знаком «-» делится на 7. Например, 138689257 делится на 7, так как на 7 делится |138-689+257|=294.

 Признак 3. Число делится на 7 тогда и только тогда, когда результат вычитания удвоенной последней цифры из этого числа без последней цифры делится на 7 (например, 259 делится на 7, так как 25 — (2 · 9) = 7 делится на 7).

Проверим делимость числа 86 576 (восемьдесят шесть тысяч пятьсот семьдесят шесть). В этом числе 8 657 (восемь тысяч шестьсот пятьдесят семь) десятков и 6 (шесть) единиц. Приступаем к проверке делимости этого числа на 7 (семь):

8657 — 6 х 2 = 8657 — 12 = 8645

Снова проверяем делимость на 7 (семь), теперь уже полученного нами числа 8 645 (восемь тысяч шестьсот сорок пять). Теперь у нас 864 (восемь шестьдесят четыре) десятка и 5(пять) единиц:

864 — 5 х 2 = 864 — 10 = 854

Опять повторяем наши действия для числа 854 (восемьсот пятьдесят четыре), в котором 85 (восемьдесят пять) десятков и 4 (четыре) единицы:

85 — 4 х 2 = 85 — 8 = 77

В принципе, уже невооруженным глазом видно, что число 77  (семьдесят семь) делится на 7 (семь) и в результате получается 11 (одиннадцать). Подобный результат мы уже рассматривали выше.

 

Как видите, признаки действительно сложные. Пользоваться ими в уме трудно из-за большого количества операций. Наиболее простой – третий признак, но тоже два действия, сначала умножение, а потом вычитание, а для чисел за 700 уже надо делать несколько циклов.

Поставил задачу:

«Найти признак деления на 7 с меньшим количеством математических действий».

Применил инструмент ТРИЗ – ИКР (идеальный конечный результат).

Само число должно давать ресурс для вычисления.

И этот ресурс нашёлся. Если посмотреть таблицу умножения на 7, то его произведения имеют отличительное свойство – конечная цифра не повторяется: 0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70. На первый взгляд, это усложняет задачу, т.к. проверяемое число с любым окончанием может делиться на 7. Но ведь по правилу ТРИЗ: «Кто мешает, тот и помогает». Надо использовать это свойство на пользу.

Смотря на последнюю цифру в проверяемом числе, мы уже знаем один признак ответа – это число из таблицы умножения, дающее этот кончик. Например, если проверяемое число 154, то если оно делится на 7, последняя цифра в ответе должна быть 2 (7х2=14), а если число 259, то последняя цифра ответа должна быть 7 (7х7=49).

Вот он нужный ресурс – это таблица умножения на 7 – 0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70.

Предполагаем, что он у нас есть в памяти. Теперь используем действие из третьего (самого простого) признака – вычитание. Получаем новый признак делимости на 7.

Число делится на 7, когда результат вычитания первой цифры известного произведения из этого числа без последней цифры делится на 7.

А теперь простыми словами.

— Смотрим на проверяемое число, например, уже известное 259.

— Оно оканчивается на 9. Берём ресурс из таблицы умножения 49 . Её первая цифра – 4.

— Вычитаем из 25 эту цифру. 25 – 4 = 21

— Ответ 21. Значит число делится на 7. Это так: 259 : 7 = 37. Последняя цифра 7, как мы и предполагали.

Ещё несколько примеров. 756 делится на 7?

Оно оканчивается на 6. Ресурс – 56. Вычитаем 75 – 5 = 70. Число делится 756 : 7 = 108

Число 392. Оканчивается на 2. Ресурс – 42. Вычитаем  39 -4 = 35. Делится 392 : 7 = 56.

Число 571. Оканчивается на 1. Ресурс – 21. Вычитаем 57 – 2 = 55. Не делится.

Число 574. Оканчивается на 4. Ресурс – 14. Вычитаем 57 – 1 = 56. Делится 574 : 7 = 82

В этом признаке мы исключили одно математическое действие – умножение.

Дополнение.

Для проверяемых чисел больше 700, чтобы избежать повторных циклов, как в признаке 3, используйте для вычитаемого кратные десятки и сотни семёрки.

Рассмотрим, например, число 973.  Оно оканчивается на 3. Ресурс – 63. Вычитаем 97 — 6 = 91. Можно идти на второй цикл, а можно вычитать не 6, а 76. 97 — 76 = 21. Делится.

Добавки идут по системе счисления семи: 70, 140, 210 и т.д. в зависимости от проверяемого числа.

Рекомендации

1. Этот признак можно применять в уме без особых трудностей, для чисел  до 1000.  Он поможет искать кратные для деления.

2. Коллеги, используйте ТРИЗ для решения своих задач! Это экономит время. Мне, чтобы найти этот признак делимости, потребовалось 3 часа с учётом поиска аналогов в интернете.

Буду рад, если этот признак кому-то пригодится.

 

Об авторе: Ефремов Сергей Владимирович, ТРИЗ-педагог, автор книг и статей по обучению детей, живет в г. Рязань.

  • Т.Шестова

    В этой истории больше всего меня поразило использование правила ТРИЗ: «Кто мешает, тот и помогает». Это ведь почти золотой ключик!

  • Элла Осипчук

    Здорово! Молодец, Сергей Владимирович! Кто-то может подумать, мол, зачем это нужно? А вот нужно! Мир чисел ещё не познан, а, возможно, именно он всем и управляет. Во всяком случае — гармонией. Браво, маэстро! Продолжайте ставить правильные вопросы — найдутся и правильные ответы.